Internal
problem
ID
[7526]
Book
:
THEORY
OF
DIFFERENTIAL
EQUATIONS
IN
ENGINEERING
AND
MECHANICS.
K.T.
CHAU,
CRC
Press.
Boca
Raton,
FL.
2018
Section
:
Chapter
3.
Ordinary
Differential
Equations.
Section
3.5
HIGHER
ORDER
ODE.
Page
181
Problem
number
:
Example
3.30
Date
solved
:
Sunday, March 30, 2025 at 12:13:40 PM
CAS
classification
:
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]
ode:=3*diff(diff(y(x),x),x)^2-diff(y(x),x)*diff(diff(diff(y(x),x),x),x)-diff(diff(y(x),x),x)*diff(y(x),x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=3*(D[y[x],{x,2}])^2-D[y[x],x]*D[y[x],{x,3}]-D[y[x],{x,2}]*(D[y[x],x])^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-Derivative(y(x), x)**2*Derivative(y(x), (x, 2)) - Derivative(y(x), x)*Derivative(y(x), (x, 3)) + 3*Derivative(y(x), (x, 2))**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)