Internal
problem
ID
[5907]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
12,
Miscellaneous
Methods
Problem
number
:
Exercise
12.42,
page
103
Date
solved
:
Sunday, March 30, 2025 at 10:25:00 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
ode:=2*x*y(x)*diff(y(x),x)+3*x^2-y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=2*x*y[x]*D[y[x],x]+3*x^2-y[x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x**2 + 2*x*y(x)*Derivative(y(x), x) - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)