32.6.41 problem Exercise 12.41, page 103

Internal problem ID [5906]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods
Problem number : Exercise 12.41, page 103
Date solved : Sunday, March 30, 2025 at 10:24:56 AM
CAS classification : [[_homogeneous, `class A`], _rational, _Bernoulli]

\begin{align*} x y y^{\prime }+x^{2}+y^{2}&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 39
ode:=x*y(x)*diff(y(x),x)+x^2+y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {\sqrt {-2 x^{4}+4 c_1}}{2 x} \\ y &= \frac {\sqrt {-2 x^{4}+4 c_1}}{2 x} \\ \end{align*}
Mathematica. Time used: 0.232 (sec). Leaf size: 46
ode=x*y[x]*D[y[x],x]+x^2+y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt {-\frac {x^4}{2}+c_1}}{x} \\ y(x)\to \frac {\sqrt {-\frac {x^4}{2}+c_1}}{x} \\ \end{align*}
Sympy. Time used: 0.400 (sec). Leaf size: 32
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2 + x*y(x)*Derivative(y(x), x) + y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\sqrt {C_{1} - 2 x^{4}}}{2 x}, \ y{\left (x \right )} = \frac {\sqrt {C_{1} - 2 x^{4}}}{2 x}\right ] \]