32.6.43 problem Exercise 12.43, page 103

Internal problem ID [5908]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods
Problem number : Exercise 12.43, page 103
Date solved : Sunday, March 30, 2025 at 10:26:20 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} \left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4}&=0 \end{align*}

Maple. Time used: 0.010 (sec). Leaf size: 313
ode:=(2*x*y(x)^3-x^4)*diff(y(x),x)+2*x^3*y(x)-y(x)^4 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {12^{{1}/{3}} \left (x 12^{{1}/{3}} c_1 +{\left (x \left (-9 c_1 \,x^{2}+\sqrt {3}\, \sqrt {\frac {27 x^{4} c_1^{3}-4 x}{c_1}}\right ) c_1^{2}\right )}^{{2}/{3}}\right )}{6 c_1 {\left (x \left (-9 c_1 \,x^{2}+\sqrt {3}\, \sqrt {\frac {27 x^{4} c_1^{3}-4 x}{c_1}}\right ) c_1^{2}\right )}^{{1}/{3}}} \\ y &= \frac {2^{{2}/{3}} 3^{{1}/{3}} \left (\left (-i \sqrt {3}-1\right ) {\left (x \left (-9 c_1 \,x^{2}+\sqrt {3}\, \sqrt {\frac {27 x^{4} c_1^{3}-4 x}{c_1}}\right ) c_1^{2}\right )}^{{2}/{3}}+2^{{2}/{3}} c_1 x \left (i 3^{{5}/{6}}-3^{{1}/{3}}\right )\right )}{12 {\left (x \left (-9 c_1 \,x^{2}+\sqrt {3}\, \sqrt {\frac {27 x^{4} c_1^{3}-4 x}{c_1}}\right ) c_1^{2}\right )}^{{1}/{3}} c_1} \\ y &= -\frac {2^{{2}/{3}} 3^{{1}/{3}} \left (\left (1-i \sqrt {3}\right ) {\left (x \left (-9 c_1 \,x^{2}+\sqrt {3}\, \sqrt {\frac {27 x^{4} c_1^{3}-4 x}{c_1}}\right ) c_1^{2}\right )}^{{2}/{3}}+2^{{2}/{3}} \left (i 3^{{5}/{6}}+3^{{1}/{3}}\right ) c_1 x \right )}{12 {\left (x \left (-9 c_1 \,x^{2}+\sqrt {3}\, \sqrt {\frac {27 x^{4} c_1^{3}-4 x}{c_1}}\right ) c_1^{2}\right )}^{{1}/{3}} c_1} \\ \end{align*}
Mathematica. Time used: 60.235 (sec). Leaf size: 331
ode=(2*x*y[x]^3-x^4)*D[y[x],x]+2*x^3*y[x]-y[x]^4==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {\sqrt [3]{2} \left (-9 x^3+\sqrt {81 x^6-12 e^{3 c_1} x^3}\right ){}^{2/3}+2 \sqrt [3]{3} e^{c_1} x}{6^{2/3} \sqrt [3]{-9 x^3+\sqrt {81 x^6-12 e^{3 c_1} x^3}}} \\ y(x)\to \frac {i \sqrt [3]{2} \sqrt [6]{3} \left (\sqrt {3}+i\right ) \left (-9 x^3+\sqrt {81 x^6-12 e^{3 c_1} x^3}\right ){}^{2/3}-2 \left (\sqrt {3}+3 i\right ) e^{c_1} x}{2\ 2^{2/3} 3^{5/6} \sqrt [3]{-9 x^3+\sqrt {81 x^6-12 e^{3 c_1} x^3}}} \\ y(x)\to \frac {\sqrt [3]{2} \sqrt [6]{3} \left (-1-i \sqrt {3}\right ) \left (-9 x^3+\sqrt {81 x^6-12 e^{3 c_1} x^3}\right ){}^{2/3}-2 \left (\sqrt {3}-3 i\right ) e^{c_1} x}{2\ 2^{2/3} 3^{5/6} \sqrt [3]{-9 x^3+\sqrt {81 x^6-12 e^{3 c_1} x^3}}} \\ \end{align*}
Sympy. Time used: 6.657 (sec). Leaf size: 5
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**3*y(x) + (-x**4 + 2*x*y(x)**3)*Derivative(y(x), x) - y(x)**4,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} x \]