29.13.7 problem 361

Internal problem ID [4961]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 13
Problem number : 361
Date solved : Sunday, March 30, 2025 at 04:21:22 AM
CAS classification : [_linear]

\begin{align*} x \left (x^{2}+1\right ) y^{\prime }&=2-4 x^{2} y \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 21
ode:=x*(x^2+1)*diff(y(x),x) = 2-4*x^2*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x^{2}+2 \ln \left (x \right )+c_1}{\left (x^{2}+1\right )^{2}} \]
Mathematica. Time used: 0.034 (sec). Leaf size: 23
ode=x(1+x^2)D[y[x],x]==2(1-2 x^2 y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {x^2+2 \log (x)+c_1}{\left (x^2+1\right )^2} \]
Sympy. Time used: 0.293 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2*y(x) + x*(x**2 + 1)*Derivative(y(x), x) - 2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} + x^{2} + 2 \log {\left (x \right )}}{x^{4} + 2 x^{2} + 1} \]