29.13.8 problem 362

Internal problem ID [4962]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 13
Problem number : 362
Date solved : Sunday, March 30, 2025 at 04:21:24 AM
CAS classification : [_linear]

\begin{align*} x \left (x^{2}+1\right ) y^{\prime }&=x -\left (5 x^{2}+3\right ) y \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 23
ode:=x*(x^2+1)*diff(y(x),x) = x-(5*x^2+3)*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x^{4}+4 c_1}{4 \left (x^{2}+1\right ) x^{3}} \]
Mathematica. Time used: 0.038 (sec). Leaf size: 26
ode=x(1+x^2)D[y[x],x]==x-(3+5 x^2)y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {x^4+4 c_1}{4 \left (x^5+x^3\right )} \]
Sympy. Time used: 0.321 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(x**2 + 1)*Derivative(y(x), x) - x + (5*x**2 + 3)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {\frac {C_{1}}{x^{3}} + \frac {x}{4}}{x^{2} + 1} \]