Internal
problem
ID
[4183]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
7.
Special
functions.
Exercises
at
page
124
Problem
number
:
3(e)
Date
solved
:
Sunday, March 30, 2025 at 02:41:50 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=diff(diff(y(x),x),x)-(x^2+4*x+2)/x/(-x^2+2)*((1-x)*diff(y(x),x)+y(x)) = 0; dsolve(ode,y(x),type='series',x=0);
ode=D[y[x],{x,2}]-(x^2+4*x+2)/(x*(2-x^2))*( (1-x)*D[y[x],x]+y[x] )==0; ic={}; AsymptoticDSolveValue[{ode,ic},{y[x]},{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) - ((1 - x)*Derivative(y(x), x) + y(x))*(x**2 + 4*x + 2)/(x*(2 - x**2)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)