Internal
problem
ID
[4182]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
7.
Special
functions.
Exercises
at
page
124
Problem
number
:
3(d)
Date
solved
:
Sunday, March 30, 2025 at 02:41:49 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+(1/4/x^2-1)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=D[y[x],{x,2}]-2*D[y[x],x]+(1/(4*x^2)-1)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},{y[x]},{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-1 + 1/(4*x**2))*y(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)