Internal
problem
ID
[4184]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
7.
Special
functions.
Exercises
at
page
124
Problem
number
:
3(f)
Date
solved
:
Sunday, March 30, 2025 at 02:41:52 AM
CAS
classification
:
[_Jacobi, [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
Using series method with expansion around
Order:=6; ode:=diff(diff(y(x),x),x)-3/x/(1-x)*diff(y(x),x)+2/x/(1-x)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=D[y[x],{x,2}]-3/(x*(1-x))*D[y[x],x]+2/(x*(1-x))*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},{y[x]},{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) + 2*y(x)/(x*(1 - x)) - 3*Derivative(y(x), x)/(x*(1 - x)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)