78.19.2 problem 1 (b)

Internal problem ID [18350]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 5. Power Series Solutions and Special Functions. Section 29. Regular singular Points. Problems at page 227
Problem number : 1 (b)
Date solved : Monday, March 31, 2025 at 05:26:08 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} \left (x^{2}-1\right )^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.021 (sec). Leaf size: 47
Order:=6; 
ode:=x^2*(x^2-1)^2*diff(diff(y(x),x),x)-x*(1-x)*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 \,x^{1-i} \left (1+\left (-\frac {3}{5}-\frac {i}{5}\right ) x +\left (\frac {1}{5}-\frac {7 i}{20}\right ) x^{2}+\left (-\frac {337}{780}+\frac {161 i}{780}\right ) x^{3}+\left (\frac {1217}{6240}-\frac {1637 i}{6240}\right ) x^{4}+\left (-\frac {80549}{226200}+\frac {8367 i}{30160}\right ) x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_2 \,x^{1+i} \left (1+\left (-\frac {3}{5}+\frac {i}{5}\right ) x +\left (\frac {1}{5}+\frac {7 i}{20}\right ) x^{2}+\left (-\frac {337}{780}-\frac {161 i}{780}\right ) x^{3}+\left (\frac {1217}{6240}+\frac {1637 i}{6240}\right ) x^{4}+\left (-\frac {80549}{226200}-\frac {8367 i}{30160}\right ) x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]
Mathematica. Time used: 0.038 (sec). Leaf size: 94
ode=x^2*(x^2-1)^2*D[y[x],{x,2}]-x*(1-x)*D[y[x],x]+2*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to \left (\frac {1}{1248}+\frac {i}{6240}\right ) c_1 x^{1+i} \left ((297+268 i) x^4-(568+144 i) x^3+(324+372 i) x^2-(672-384 i) x+(1200-240 i)\right )-\left (\frac {1}{6240}+\frac {i}{1248}\right ) c_2 x^{1-i} \left ((268+297 i) x^4-(144+568 i) x^3+(372+324 i) x^2+(384-672 i) x-(240-1200 i)\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*(x**2 - 1)**2*Derivative(y(x), (x, 2)) - x*(1 - x)*Derivative(y(x), x) + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
ValueError : Expected Expr or iterable but got None