78.19.4 problem 1 (d)

Internal problem ID [18352]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 5. Power Series Solutions and Special Functions. Section 29. Regular singular Points. Problems at page 227
Problem number : 1 (d)
Date solved : Monday, March 31, 2025 at 05:26:11 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (3 x +1\right ) x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.031 (sec). Leaf size: 60
Order:=6; 
ode:=(3*x+1)*x*diff(diff(y(x),x),x)-(1+x)*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 \,x^{2} \left (1-2 x +\frac {17}{4} x^{2}-\frac {289}{30} x^{3}+\frac {5491}{240} x^{4}-\frac {236113}{4200} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_2 \left (\ln \left (x \right ) \left (2 x^{2}-4 x^{3}+\frac {17}{2} x^{4}-\frac {289}{15} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (-2-4 x +6 x^{2}-12 x^{3}+\frac {209}{8} x^{4}-\frac {54247}{900} x^{5}+\operatorname {O}\left (x^{6}\right )\right )\right ) \]
Mathematica. Time used: 0.045 (sec). Leaf size: 84
ode=(3*x+1)*x*D[y[x],{x,2}]-(x+1)*D[y[x],x]+2*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {1}{16} \left (29 x^4-16 x^3+8 x^2+32 x+16\right )-\frac {1}{4} x^2 \left (17 x^2-8 x+4\right ) \log (x)\right )+c_2 \left (\frac {5491 x^6}{240}-\frac {289 x^5}{30}+\frac {17 x^4}{4}-2 x^3+x^2\right ) \]
Sympy. Time used: 0.981 (sec). Leaf size: 27
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(3*x + 1)*Derivative(y(x), (x, 2)) - (x + 1)*Derivative(y(x), x) + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{1} x^{2} \left (- \frac {x^{3}}{45} + \frac {x^{2}}{6} - \frac {2 x}{3} + 1\right ) + O\left (x^{6}\right ) \]