Internal
problem
ID
[17095]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.5
Linear
equations
with
variable
coefficients.
The
Lagrange
method.
Exercises
page
148
Problem
number
:
671
Date
solved
:
Monday, March 31, 2025 at 03:41:26 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=2*x^2*(2-ln(x))*diff(diff(y(x),x),x)+x*(4-ln(x))*diff(y(x),x)-y(x) = (2-ln(x))^2/x^(1/2); ic:=y(infinity) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=2*x^2*(2-Log[x])*D[y[x],{x,2}]+x*(4-Log[x])*D[y[x],x]-y[x]==(2-Log[x])^2/Sqrt[x]; ic={y[Infinity]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x**2*(2 - log(x))*Derivative(y(x), (x, 2)) + x*(4 - log(x))*Derivative(y(x), x) - y(x) - (2 - log(x))**2/sqrt(x),0) ics = {y(oo): 0} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-2*x**(5/2)*log(x)*Derivative(y(x), (x, 2)) + 4*x**(5/2)*Derivative(y(x), (x, 2)) - sqrt(x)*y(x) - log(x)**2 + 4*log(x) - 4)/(x**(3/2)*(log(x) - 4)) cannot be solved by the factorable group method