Internal
problem
ID
[17074]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.5
Linear
equations
with
variable
coefficients.
The
Lagrange
method.
Exercises
page
148
Problem
number
:
646
Date
solved
:
Monday, March 31, 2025 at 03:39:59 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using reduction of order method given that one solution is
ode:=(x^4-x^3)*diff(diff(y(x),x),x)+(2*x^3-2*x^2-x)*diff(y(x),x)-y(x) = (x-1)^2/x; dsolve(ode,y(x), singsol=all);
ode=(x^4-x^3)*D[y[x],{x,2}]+(2*x^3-2*x^2-x)*D[y[x],x]-y[x]==(x-1)^2/x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x**4 - x**3)*Derivative(y(x), (x, 2)) + (2*x**3 - 2*x**2 - x)*Derivative(y(x), x) - y(x) - (x - 1)**2/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**5*Derivative(y(x), (x, 2)) - x**4*Derivative(y(x), (x, 2)) - x**2 - x*y(x) + 2*x - 1)/(x**2*(-2*x**2 + 2*x + 1)) cannot be solved by the factorable group method