Internal
problem
ID
[17073]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.5
Linear
equations
with
variable
coefficients.
The
Lagrange
method.
Exercises
page
148
Problem
number
:
645
Date
solved
:
Monday, March 31, 2025 at 03:39:58 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using reduction of order method given that one solution is
ode:=diff(diff(y(x),x),x)+diff(y(x),x)+exp(-2*x)*y(x) = exp(-3*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+D[y[x],x]+Exp[-2*x]*y[x]==Exp[-3*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x)*exp(-2*x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)) - exp(-3*x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : solve: Cannot solve y(x)*exp(-2*x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)) - exp(-3*x)