Internal
problem
ID
[17075]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.5
Linear
equations
with
variable
coefficients.
The
Lagrange
method.
Exercises
page
148
Problem
number
:
647
Date
solved
:
Monday, March 31, 2025 at 03:40:00 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using reduction of order method given that one solution is
ode:=diff(diff(y(x),x),x)-diff(y(x),x)+exp(2*x)*y(x) = x*exp(2*x)-1; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-D[y[x],x]+Exp[2*x]*y[x]==x*Exp[2*x]-1; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*exp(2*x) + y(x)*exp(2*x) - Derivative(y(x), x) + Derivative(y(x), (x, 2)) + 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE x*exp(2*x) - y(x)*exp(2*x) + Derivative(y(x), x) - Derivative(y(x), (x, 2)) - 1 cannot be solved by the factorable group method