Internal
problem
ID
[17072]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.5
Linear
equations
with
variable
coefficients.
The
Lagrange
method.
Exercises
page
148
Problem
number
:
644
Date
solved
:
Monday, March 31, 2025 at 03:39:57 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using reduction of order method given that one solution is
ode:=(x-1)*diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = (x-1)^2*exp(x); dsolve(ode,y(x), singsol=all);
ode=(x-1)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==(x-1)^2*Exp[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*Derivative(y(x), x) - (x - 1)**2*exp(x) + (x - 1)*Derivative(y(x), (x, 2)) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x*(-x*exp(x) + 2*exp(x) + Derivative(y(x), (x, 2))) + y(x) - exp(x) - Derivative(y(x), (x, 2)))/x cannot be solved by the factorable group method