Internal
problem
ID
[16294]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.4,
page
163
Problem
number
:
64
Date
solved
:
Monday, March 31, 2025 at 02:49:48 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=t^2*(ln(t)-1)*diff(diff(y(t),t),t)-t*diff(y(t),t)+y(t) = -3/4*(ln(t)+1)/t^(1/2); ic:=y(1) = 0, D(y)(1) = 0; dsolve([ode,ic],y(t), singsol=all);
ode=t^2*(Log[t]-1)*D[y[t],{t,2}]-t*D[y[t],t]+y[t]==-3/4*(1+Log[t])*1/Sqrt[t]; ic={y[1]==0,Derivative[1][y][1]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t**2*(log(t) - 1)*Derivative(y(t), (t, 2)) - t*Derivative(y(t), t) + y(t) + (3*log(t)/4 + 3/4)/sqrt(t),0) ics = {y(1): 0, Subs(Derivative(y(t), t), t, 1): 0} dsolve(ode,func=y(t),ics=ics)
NotImplementedError : The given ODE Derivative(y(t), t) - (t**(7/2)*(log(t) - 1)*Derivative(y(t), (t, 2)) + t**(3/2)*y(t) + 3*t*(log(t) + 1)/4)/t**(5/2) cannot be solved by the factorable group method