Internal
problem
ID
[16295]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.4,
page
163
Problem
number
:
65
Date
solved
:
Monday, March 31, 2025 at 02:49:50 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=(sin(t)-t*cos(t))*diff(diff(y(t),t),t)-t*sin(t)*diff(y(t),t)+y(t)*sin(t) = t; ic:=y(1/4*Pi) = 0, D(y)(1/4*Pi) = 0; dsolve([ode,ic],y(t), singsol=all);
ode=(Sin[t]-t*Cos[t])*D[y[t],{t,2}]-t*Sin[t]*D[y[t],t]+Sin[t]*y[t]==t; ic={y[Pi/4]==0,Derivative[1][y][Pi/4]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t*sin(t)*Derivative(y(t), t) - t + (-t*cos(t) + sin(t))*Derivative(y(t), (t, 2)) + y(t)*sin(t),0) ics = {y(pi/4): 0, Subs(Derivative(y(t), t), t, pi/4): 0} dsolve(ode,func=y(t),ics=ics)
NotImplementedError : The given ODE Derivative(y(t), t) - (-t*Derivative(y(t), (t, 2))/tan(t) - t/sin(t) + y(t) + Derivative(y(t), (t, 2)))/t cannot be solved by the factorable group method