Internal
problem
ID
[16293]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.4,
page
163
Problem
number
:
63
(c)
Date
solved
:
Monday, March 31, 2025 at 02:49:46 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=4*t^2*diff(diff(y(t),t),t)+4*t*diff(y(t),t)+(16*t^2-1)*y(t) = 16*t^(3/2); ic:=y(Pi) = 0, D(y)(2*Pi) = 0; dsolve([ode,ic],y(t), singsol=all);
ode=4*t^2*D[y[t],{t,2}]+4*t*D[y[t],t]+(16*t^2-1)*y[t]==16*t^(3/2); ic={y[Pi]==0,Derivative[1][y][2*Pi]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-16*t**(3/2) + 4*t**2*Derivative(y(t), (t, 2)) + 4*t*Derivative(y(t), t) + (16*t**2 - 1)*y(t),0) ics = {y(pi): 0, Subs(Derivative(y(t), t), t, 2*pi): 0} dsolve(ode,func=y(t),ics=ics)
NotImplementedError : The given ODE -4*sqrt(t) + 4*t*y(t) + t*Derivative(y(t), (t, 2)) + Derivative(y(t), t) - y(t)/(4*t) cannot be solved by the factorable group method