Internal
problem
ID
[13483]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
4,
Section
4.5.
The
Cauchy-Euler
Equation.
Exercises
page
169
Problem
number
:
24
Date
solved
:
Monday, March 31, 2025 at 07:59:17 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=x^2*diff(diff(y(x),x),x)-4*x*diff(y(x),x)+4*y(x) = -6*x^3+4*x^2; ic:=y(2) = 4, D(y)(2) = -1; dsolve([ode,ic],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+4*y[x]==4*x^2-6*x^3; ic={y[2]==4,Derivative[1][y][2]==-1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(6*x**3 + x**2*Derivative(y(x), (x, 2)) - 4*x**2 - 4*x*Derivative(y(x), x) + 4*y(x),0) ics = {y(2): 4, Subs(Derivative(y(x), x), x, 2): -1} dsolve(ode,func=y(x),ics=ics)