Internal
problem
ID
[13482]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
4,
Section
4.5.
The
Cauchy-Euler
Equation.
Exercises
page
169
Problem
number
:
23
Date
solved
:
Monday, March 31, 2025 at 07:59:15 AM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
With initial conditions
ode:=x^2*diff(diff(y(x),x),x)-2*y(x) = 4*x-8; ic:=y(1) = 4, D(y)(1) = -1; dsolve([ode,ic],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-2*y[x]==4*x-8; ic={y[1]==4,Derivative[1][y][1]==-1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 4*x - 2*y(x) + 8,0) ics = {y(1): 4, Subs(Derivative(y(x), x), x, 1): -1} dsolve(ode,func=y(x),ics=ics)