Internal
problem
ID
[13484]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
4,
Section
4.5.
The
Cauchy-Euler
Equation.
Exercises
page
169
Problem
number
:
25
Date
solved
:
Monday, March 31, 2025 at 07:59:20 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=x^2*diff(diff(y(x),x),x)+2*x*diff(y(x),x)-6*y(x) = 10*x^2; ic:=y(1) = 1, D(y)(1) = -6; dsolve([ode,ic],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+2*x*D[y[x],x]-6*y[x]==10*x^2; ic={y[1]==1,Derivative[1][y][1]==-6}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 10*x**2 + 2*x*Derivative(y(x), x) - 6*y(x),0) ics = {y(1): 1, Subs(Derivative(y(x), x), x, 1): -6} dsolve(ode,func=y(x),ics=ics)