Internal
problem
ID
[12828]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
IV,
differential
equations
of
the
first
order
and
higher
degree
than
the
first.
Article
27.
Clairaut
equation.
Page
56
Problem
number
:
Ex
8
Date
solved
:
Monday, March 31, 2025 at 07:19:01 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=a^2*y(x)*diff(y(x),x)^2-2*x*diff(y(x),x)+y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=a^2*y[x]*(D[y[x],x])^2-2*x*D[y[x],x]+y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(a**2*y(x)*Derivative(y(x), x)**2 - 2*x*Derivative(y(x), x) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out