Internal
problem
ID
[12827]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
IV,
differential
equations
of
the
first
order
and
higher
degree
than
the
first.
Article
27.
Clairaut
equation.
Page
56
Problem
number
:
Ex
7
Date
solved
:
Monday, March 31, 2025 at 07:17:10 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=y(x) = 2*x*diff(y(x),x)+y(x)^2*diff(y(x),x)^3; dsolve(ode,y(x), singsol=all);
ode=y[x]==2*D[y[x],x]*x+y[x]^2*(D[y[x],x])^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*Derivative(y(x), x) - y(x)**2*Derivative(y(x), x)**3 + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
IndexError : list index out of range