Internal
problem
ID
[12829]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
IV,
differential
equations
of
the
first
order
and
higher
degree
than
the
first.
Article
27.
Clairaut
equation.
Page
56
Problem
number
:
Ex
9
Date
solved
:
Monday, March 31, 2025 at 07:19:03 AM
CAS
classification
:
[`y=_G(x,y')`]
ode:=(x-diff(y(x),x)-y(x))^2 = x^2*(2*x*y(x)-x^2*diff(y(x),x)); dsolve(ode,y(x), singsol=all);
ode=(x-D[y[x],x]-y[x])^2==x^2*(2*x*y[x]-x^2*D[y[x],x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*(-x**2*Derivative(y(x), x) + 2*x*y(x)) + (x - y(x) - Derivative(y(x), x))**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out