61.32.6 problem 216

Internal problem ID [12637]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-7
Problem number : 216
Date solved : Monday, March 31, 2025 at 06:48:54 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} \left (x -a \right )^{2} y^{\prime \prime }+b y&=0 \end{align*}

Maple. Time used: 0.008 (sec). Leaf size: 67
ode:=x^2*(x-a)^2*diff(diff(y(x),x),x)+b*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sqrt {x \left (-x +a \right )}\, \left (\left (\frac {x}{-x +a}\right )^{\frac {\sqrt {a^{2}-4 b}}{2 a}} c_2 +\left (\frac {-x +a}{x}\right )^{\frac {\sqrt {a^{2}-4 b}}{2 a}} c_1 \right ) \]
Mathematica. Time used: 0.224 (sec). Leaf size: 112
ode=x^2*(x-a)^2*D[y[x],{x,2}]+b*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \exp \left (\int _1^x\frac {\sqrt {1-\frac {4 b}{a^2}} a+a-2 K[1]}{2 (a-K[1]) K[1]}dK[1]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[2]}\frac {\sqrt {1-\frac {4 b}{a^2}} a+a-2 K[1]}{2 (a-K[1]) K[1]}dK[1]\right )dK[2]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(b*y(x) + x**2*(-a + x)**2*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE b*y(x) + x**2*(-a + x)**2*Derivative(y(x), (x, 2)) cannot be solved by the hypergeometric method