61.32.7 problem 217

Internal problem ID [12638]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-7
Problem number : 217
Date solved : Monday, March 31, 2025 at 06:48:55 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} x^{2} \left (x -a \right )^{2} y^{\prime \prime }+b y&=c \,x^{2} \left (x -a \right )^{2} \end{align*}

Maple. Time used: 0.115 (sec). Leaf size: 219
ode:=x^2*(x-a)^2*diff(diff(y(x),x),x)+b*y(x) = c*x^2*(x-a)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (-\int \sqrt {x \left (-x +a \right )}\, \left (\frac {-x +a}{x}\right )^{-\frac {\sqrt {a^{2}-4 b}}{2 a}}d x \left (\frac {-x +a}{x}\right )^{\frac {\sqrt {a^{2}-4 b}}{2 a}} c +\int \sqrt {x \left (-x +a \right )}\, \left (\frac {x}{-x +a}\right )^{-\frac {\sqrt {a^{2}-4 b}}{2 a}}d x \left (\frac {x}{-x +a}\right )^{\frac {\sqrt {a^{2}-4 b}}{2 a}} c +\left (\frac {x}{-x +a}\right )^{\frac {\sqrt {a^{2}-4 b}}{2 a}} c_1 \sqrt {a^{2}-4 b}+\left (\frac {-x +a}{x}\right )^{\frac {\sqrt {a^{2}-4 b}}{2 a}} c_2 \sqrt {a^{2}-4 b}\right ) \sqrt {x \left (-x +a \right )}}{\sqrt {a^{2}-4 b}} \]
Mathematica. Time used: 0.182 (sec). Leaf size: 280
ode=x^2*(x-a)^2*D[y[x],{x,2}]+b*y[x]==c*x^2*(x-a)^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \exp \left (\int _1^x\frac {\sqrt {1-\frac {4 b}{a^2}} a+a-2 K[1]}{2 (a-K[1]) K[1]}dK[1]\right ) \left (\int _1^x-c \exp \left (\int _1^{K[3]}\frac {\sqrt {1-\frac {4 b}{a^2}} a+a-2 K[1]}{2 (a-K[1]) K[1]}dK[1]\right ) \int _1^{K[3]}\exp \left (-2 \int _1^{K[2]}\frac {\sqrt {1-\frac {4 b}{a^2}} a+a-2 K[1]}{2 (a-K[1]) K[1]}dK[1]\right )dK[2]dK[3]+\int _1^x\exp \left (-2 \int _1^{K[2]}\frac {\sqrt {1-\frac {4 b}{a^2}} a+a-2 K[1]}{2 (a-K[1]) K[1]}dK[1]\right )dK[2] \left (\int _1^xc \exp \left (\int _1^{K[4]}\frac {\sqrt {1-\frac {4 b}{a^2}} a+a-2 K[1]}{2 (a-K[1]) K[1]}dK[1]\right )dK[4]+c_2\right )+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
ode = Eq(b*y(x) - c*x**2*(-a + x)**2 + x**2*(-a + x)**2*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : solve: Cannot solve b*y(x) - c*x**2*(-a + x)**2 + x**2*(-a + x)**2*Derivative(y(x), (x, 2))