61.32.5 problem 215

Internal problem ID [12636]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-7
Problem number : 215
Date solved : Monday, March 31, 2025 at 06:48:51 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{4} y^{\prime \prime }+a \,x^{n} y^{\prime }-\left (a \,x^{n -1}+a b \,x^{n -2}+b^{2}\right ) y&=0 \end{align*}

Maple
ode:=x^4*diff(diff(y(x),x),x)+a*x^n*diff(y(x),x)-(a*x^(n-1)+a*b*x^(n-2)+b^2)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=x^4*D[y[x],{x,2}]+a*x^n*D[y[x],x]-(a*x^(n-1)+a*b*x^(n-2)+b^2)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
n = symbols("n") 
y = Function("y") 
ode = Eq(a*x**n*Derivative(y(x), x) + x**4*Derivative(y(x), (x, 2)) - (a*b*x**(n - 2) + a*x**(n - 1) + b**2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : Add object cannot be interpreted as an integer