Internal
problem
ID
[11470]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1503
Date
solved
:
Sunday, March 30, 2025 at 08:22:52 PM
CAS
classification
:
[[_3rd_order, _missing_y]]
ode:=(x^2+1)*diff(diff(diff(y(x),x),x),x)+8*x*diff(diff(y(x),x),x)+10*diff(y(x),x)-3+1/x^2-2*ln(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-3 + x^(-2) - 2*Log[x] + 10*D[y[x],x] + 8*x*D[y[x],{x,2}] + (1 + x^2)*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(8*x*Derivative(y(x), (x, 2)) + (x**2 + 1)*Derivative(y(x), (x, 3)) - 2*log(x) + 10*Derivative(y(x), x) - 3 + x**(-2),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**2*(-x**2*Derivative(y(x), (x, 3)) - 8*x*Derivative(y(x), (x, 2)) + 2*log(x) - Derivative(y(x), (x, 3)) + 3) - 1)/(10*x**2) cannot be solved by the factorable group method