Internal
problem
ID
[11471]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1504
Date
solved
:
Sunday, March 30, 2025 at 08:22:55 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=(x^2+2)*diff(diff(diff(y(x),x),x),x)-2*x*diff(diff(y(x),x),x)+(x^2+2)*diff(y(x),x)-2*x*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-2*x*y[x] + (2 + x^2)*D[y[x],x] - 2*x*D[y[x],{x,2}] + (2 + x^2)*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*y(x) - 2*x*Derivative(y(x), (x, 2)) + (x**2 + 2)*Derivative(y(x), x) + (x**2 + 2)*Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**2*Derivative(y(x), (x, 3)) + 2*x*y(x) + 2*x*Derivative(y(x), (x, 2)) - 2*Derivative(y(x), (x, 3)))/(x**2 + 2) cannot be solved by the factorable group method