Internal
problem
ID
[11469]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1502
Date
solved
:
Sunday, March 30, 2025 at 08:22:51 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(diff(y(x),x),x),x)-(x^4-6*x)*diff(diff(y(x),x),x)-(2*x^3-6)*diff(y(x),x)+2*x^2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=2*x^2*y[x] - (-6 + 2*x^3)*D[y[x],x] - (-6*x + x^4)*D[y[x],{x,2}] + x^2*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x**2*y(x) + x**2*Derivative(y(x), (x, 3)) - (2*x**3 - 6)*Derivative(y(x), x) - (x**4 - 6*x)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x*(-x**3*Derivative(y(x), (x, 2)) + 2*x*y(x) + x*Derivative(y(x), (x, 3)) + 6*Derivative(y(x), (x, 2)))/(2*(x**3 - 3)) + Derivative(y(x), x) cannot be solved by the factorable group method