Internal
problem
ID
[11291]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1312
Date
solved
:
Sunday, March 30, 2025 at 08:08:11 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
ode:=x*(x^2+1)*diff(diff(y(x),x),x)+2*(x^2-1)*diff(y(x),x)-2*x*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-2*x*y[x] + 2*(-1 + x^2)*D[y[x],x] + x*(1 + x^2)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x**2 + 1)*Derivative(y(x), (x, 2)) - 2*x*y(x) + (2*x**2 - 2)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False