Internal
problem
ID
[11292]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1313
Date
solved
:
Sunday, March 30, 2025 at 08:08:12 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x*(x^2+1)*diff(diff(y(x),x),x)+(2*(n+1)*x^2+2*n+1)*diff(y(x),x)-(v-n)*(v+n+1)*x*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(n - v)*(1 + n + v)*x*y[x] + (1 + 2*n + 2*(1 + n)*x^2)*D[y[x],x] + x*(1 + x^2)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") n = symbols("n") v = symbols("v") y = Function("y") ode = Eq(-x*(-n + v)*(n + v + 1)*y(x) + x*(x**2 + 1)*Derivative(y(x), (x, 2)) + (2*n + x**2*(2*n + 2) + 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False