60.3.294 problem 1311

Internal problem ID [11290]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1311
Date solved : Sunday, March 30, 2025 at 08:08:08 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x \left (x^{2}+1\right ) y^{\prime \prime }+\left (2 x^{2}+1\right ) y^{\prime }-v \left (v +1\right ) x y&=0 \end{align*}

Maple. Time used: 0.068 (sec). Leaf size: 52
ode:=x*(x^2+1)*diff(diff(y(x),x),x)+(2*x^2+1)*diff(y(x),x)-v*(v+1)*x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \operatorname {hypergeom}\left (\left [-\frac {v}{2}, \frac {1}{2}+\frac {v}{2}\right ], \left [\frac {1}{2}\right ], x^{2}+1\right )+c_2 \sqrt {x^{2}+1}\, \operatorname {hypergeom}\left (\left [1+\frac {v}{2}, \frac {1}{2}-\frac {v}{2}\right ], \left [\frac {3}{2}\right ], x^{2}+1\right ) \]
Mathematica. Time used: 0.51 (sec). Leaf size: 61
ode=-(v*(1 + v)*x*y[x]) + (1 + 2*x^2)*D[y[x],x] + x*(1 + x^2)*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_2 G_{2,2}^{2,0}\left (-x^2| \begin {array}{c} \frac {1-v}{2},\frac {v+2}{2} \\ 0,0 \\ \end {array} \right )+c_1 \operatorname {Hypergeometric2F1}\left (-\frac {v}{2},\frac {v+1}{2},1,-x^2\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
v = symbols("v") 
y = Function("y") 
ode = Eq(-v*x*(v + 1)*y(x) + x*(x**2 + 1)*Derivative(y(x), (x, 2)) + (2*x**2 + 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False