Internal
problem
ID
[10903]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
907
Date
solved
:
Sunday, March 30, 2025 at 07:21:28 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]
ode:=diff(y(x),x) = 1/2*(-2*cos(x)*x+2*sin(x)*x^2+2*x+2*y(x)^2+4*y(x)*cos(x)*x-4*x*y(x)+x^2*cos(2*x)+3*x^2-4*x^2*cos(x))/x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (x + (3*x^2)/2 - x*Cos[x] - 2*x^2*Cos[x] + (x^2*Cos[2*x])/2 + x^2*Sin[x] - 2*x*y[x] + 2*x*Cos[x]*y[x] + y[x]^2)/x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (2*x**2*sin(x) - 4*x**2*cos(x) + x**2*cos(2*x) + 3*x**2 + 4*x*y(x)*cos(x) - 4*x*y(x) - 2*x*cos(x) + 2*x + 2*y(x)**2)/(2*x),0) ics = {} dsolve(ode,func=y(x),ics=ics)