Internal
problem
ID
[10356]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
349
Date
solved
:
Sunday, March 30, 2025 at 04:23:25 PM
CAS
classification
:
[[_homogeneous, `class A`]]
ode:=x*diff(y(x),x)*cot(y(x)/x)+2*x*sin(y(x)/x)-y(x)*cot(y(x)/x) = 0; dsolve(ode,y(x), singsol=all);
ode=2*x*Sin[y[x]/x] - Cot[y[x]/x]*y[x] + x*Cot[y[x]/x]*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*sin(y(x)/x) + x*Derivative(y(x), x)/tan(y(x)/x) - y(x)/tan(y(x)/x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : cannot determine truth value of Relational