60.1.343 problem 350

Internal problem ID [10357]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 350
Date solved : Sunday, March 30, 2025 at 04:23:30 PM
CAS classification : unknown

\begin{align*} y^{\prime } \cos \left (y\right )-\cos \left (x \right ) \sin \left (y\right )^{2}-\sin \left (y\right )&=0 \end{align*}

Maple. Time used: 0.100 (sec). Leaf size: 262
ode:=diff(y(x),x)*cos(y(x))-cos(x)*sin(y(x))^2-sin(y(x)) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \arctan \left (-\frac {2}{\cos \left (x \right )+\sin \left (x \right )+2 \,{\mathrm e}^{-x} c_1}, \frac {\sqrt {\left (2 \cos \left (x \right ) \sin \left (x \right ) {\mathrm e}^{2 x}+4 c_1 \sin \left (x \right ) {\mathrm e}^{x}+4 \cos \left (x \right ) c_1 \,{\mathrm e}^{x}+4 c_1^{2}+{\mathrm e}^{2 x}\right ) \left (2 \cos \left (x \right ) \sin \left (x \right ) {\mathrm e}^{2 x}+4 c_1 \sin \left (x \right ) {\mathrm e}^{x}+4 \cos \left (x \right ) c_1 \,{\mathrm e}^{x}-3 \,{\mathrm e}^{2 x}+4 c_1^{2}\right )}}{2 \cos \left (x \right ) \sin \left (x \right ) {\mathrm e}^{2 x}+4 c_1 \sin \left (x \right ) {\mathrm e}^{x}+4 \cos \left (x \right ) c_1 \,{\mathrm e}^{x}+4 c_1^{2}+{\mathrm e}^{2 x}}\right ) \\ y &= \arctan \left (-\frac {2}{\cos \left (x \right )+\sin \left (x \right )+2 \,{\mathrm e}^{-x} c_1}, -\frac {\sqrt {\left (2 \cos \left (x \right ) \sin \left (x \right ) {\mathrm e}^{2 x}+4 c_1 \sin \left (x \right ) {\mathrm e}^{x}+4 \cos \left (x \right ) c_1 \,{\mathrm e}^{x}+4 c_1^{2}+{\mathrm e}^{2 x}\right ) \left (2 \cos \left (x \right ) \sin \left (x \right ) {\mathrm e}^{2 x}+4 c_1 \sin \left (x \right ) {\mathrm e}^{x}+4 \cos \left (x \right ) c_1 \,{\mathrm e}^{x}-3 \,{\mathrm e}^{2 x}+4 c_1^{2}\right )}}{2 \cos \left (x \right ) \sin \left (x \right ) {\mathrm e}^{2 x}+4 c_1 \sin \left (x \right ) {\mathrm e}^{x}+4 \cos \left (x \right ) c_1 \,{\mathrm e}^{x}+4 c_1^{2}+{\mathrm e}^{2 x}}\right ) \\ \end{align*}
Mathematica. Time used: 0.416 (sec). Leaf size: 219
ode=-Sin[y[x]] - Cos[x]*Sin[y[x]]^2 + Cos[y[x]]*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^x-\frac {1}{4} e^{K[1]} \csc (y(x)) (2 \cos (K[1]) \csc (y(x))-\cos (K[1]-2 y(x)) \csc (y(x))-\cos (K[1]+2 y(x)) \csc (y(x))+4)dK[1]+\int _1^{y(x)}\left (e^x \cot (K[2]) \csc (K[2])-\int _1^x\left (\frac {1}{4} e^{K[1]} \cot (K[2]) \csc (K[2]) (2 \cos (K[1]) \csc (K[2])-\cos (K[1]-2 K[2]) \csc (K[2])-\cos (K[1]+2 K[2]) \csc (K[2])+4)-\frac {1}{4} e^{K[1]} \csc (K[2]) (-2 \cos (K[1]) \cot (K[2]) \csc (K[2])+\cos (K[1]-2 K[2]) \cot (K[2]) \csc (K[2])+\cos (K[1]+2 K[2]) \cot (K[2]) \csc (K[2])-2 \sin (K[1]-2 K[2]) \csc (K[2])+2 \sin (K[1]+2 K[2]) \csc (K[2]))\right )dK[1]\right )dK[2]=c_1,y(x)\right ] \]
Sympy. Time used: 7.921 (sec). Leaf size: 53
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-sin(y(x))**2*cos(x) - sin(y(x)) + cos(y(x))*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \operatorname {asin}{\left (\frac {2 e^{x}}{C_{1} + \sqrt {2} e^{x} \sin {\left (x + \frac {\pi }{4} \right )}} \right )} + \pi , \ y{\left (x \right )} = \operatorname {asin}{\left (\frac {2 e^{x}}{C_{1} - \sqrt {2} e^{x} \sin {\left (x + \frac {\pi }{4} \right )}} \right )}\right ] \]