60.1.341 problem 348

Internal problem ID [10355]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 348
Date solved : Sunday, March 30, 2025 at 04:23:15 PM
CAS classification : [_exact]

\begin{align*} \left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime }+y \cos \left (x \right )+\sin \left (y\right )&=0 \end{align*}

Maple. Time used: 0.016 (sec). Leaf size: 15
ode:=(x*cos(y(x))+sin(x))*diff(y(x),x)+y(x)*cos(x)+sin(y(x)) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \sin \left (x \right ) y+x \sin \left (y\right )+c_1 = 0 \]
Mathematica. Time used: 0.153 (sec). Leaf size: 56
ode=Sin[y[x]] + Cos[x]*y[x] + (x*Cos[y[x]] + Sin[x])*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^x(\sin (y(x))+\cos (K[1]) y(x))dK[1]+\int _1^{y(x)}\left (x \cos (K[2])+\sin (x)-\int _1^x(\cos (K[1])+\cos (K[2]))dK[1]\right )dK[2]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x*cos(y(x)) + sin(x))*Derivative(y(x), x) + y(x)*cos(x) + sin(y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out