4.4.43 Problems 4201 to 4300

Table 4.629: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

Sympy

18999

\[ {} 9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

19000

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

19001

\[ {} 6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

19011

\[ {} y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

19013

\[ {} y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]

19014

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

19015

\[ {} y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]

19257

\[ {} y^{\prime \prime } = \frac {1}{\sqrt {y}} \]

19262

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = \ln \left (y\right ) y^{2} \]

19263

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

19264

\[ {} x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

19265

\[ {} n \,x^{3} y^{\prime \prime } = \left (y-x y^{\prime }\right )^{2} \]

19268

\[ {} y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime }-x y^{2} = 0 \]

19271

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}-{y^{\prime }}^{4} = 0 \]

19272

\[ {} a^{2} y^{\prime \prime } = 2 x \sqrt {1+{y^{\prime }}^{2}} \]

19273

\[ {} x^{2} y y^{\prime \prime }+x^{2} {y^{\prime }}^{2}-5 y y^{\prime } x = 4 y^{2} \]

19274

\[ {} \left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2}+\left (1-\ln \left (y\right )\right ) y y^{\prime \prime } = 0 \]

19277

\[ {} {y^{\prime \prime }}^{2}+2 x y^{\prime \prime }-y^{\prime } = 0 \]

19278

\[ {} {y^{\prime \prime }}^{2}-2 x y^{\prime \prime }-y^{\prime } = 0 \]

19281

\[ {} n \left (n +1\right ) y-2 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

19282

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

19283

\[ {} \sin \left (x \right )^{2} y^{\prime \prime } = 2 y \]

19291

\[ {} y^{\prime \prime }+y = 0 \]

19293

\[ {} y^{\prime \prime }+p_{1} y^{\prime }+p_{2} y = 0 \]

19294

\[ {} \left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0 \]

19295

\[ {} \sin \left (x \right )^{2} y^{\prime \prime }+\sin \left (x \right ) \cos \left (x \right ) y^{\prime } = y \]

19300

\[ {} 2 y^{\prime \prime }+y^{\prime }-y = 0 \]

19312

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {n \left (n +1\right ) y}{x^{2}} = 0 \]

19318

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{x}+\left (1-\frac {m^{2}}{x^{2}}\right ) y = 0 \]

19319

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

19320

\[ {} y^{\prime \prime }+\frac {2 p y^{\prime }}{x}+y = 0 \]

19321

\[ {} x y^{\prime \prime }-y^{\prime }-x^{3} y = 0 \]

19323

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

19330

\[ {} y^{\prime \prime }+2 y^{\prime }+y^{2} = 0 \]

19346

\[ {} y^{\prime \prime }+4 y = 0 \]

19347

\[ {} y^{\prime \prime }-4 y = 0 \]

19387

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

19473

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

19474

\[ {} x y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

19475

\[ {} y^{\prime \prime }-k y = 0 \]

19476

\[ {} x^{2} y^{\prime \prime } = 2 x y^{\prime }+{y^{\prime }}^{2} \]

19478

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

19480

\[ {} \left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

19481

\[ {} y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2} \]

19482

\[ {} y^{\prime \prime } = {\mathrm e}^{y} y^{\prime } \]

19485

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2} \]

19491

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2}-2 y y^{\prime } = 0 \]

19495

\[ {} y^{\prime \prime }+2 x {y^{\prime }}^{2} = 0 \]

19507

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = 0 \]

19519

\[ {} x^{2} y^{\prime \prime } = \left (3 x -2 y^{\prime }\right ) y^{\prime } \]

19525

\[ {} y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

19530

\[ {} {y^{\prime }}^{2}+x^{2} y^{\prime \prime } = 0 \]

19533

\[ {} y^{\prime \prime } = 2 {y^{\prime }}^{3} y \]

19536

\[ {} x y^{\prime \prime }+y^{\prime } = 0 \]

19544

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

19546

\[ {} -5 y-3 x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

19547

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = 0 \]

19548

\[ {} -y+y^{\prime \prime } = 0 \]

19549

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19550

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

19551

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = 0 \]

19552

\[ {} x^{2} y^{\prime \prime }-2 y = 0 \]

19553

\[ {} y^{\prime \prime }+y^{\prime }-2 y = 0 \]

19554

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

19555

\[ {} y^{\prime \prime }+y^{\prime } = 0 \]

19556

\[ {} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

19557

\[ {} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

19558

\[ {} y^{\prime \prime }+y = 0 \]

19559

\[ {} -y+y^{\prime \prime } = 0 \]

19560

\[ {} x y^{\prime \prime }+3 y^{\prime } = 0 \]

19561

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

19562

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19563

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

19564

\[ {} y^{\prime \prime }-\frac {x y^{\prime }}{x -1}+\frac {y}{x -1} = 0 \]

19565

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

19566

\[ {} x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

19567

\[ {} y^{\prime \prime }-x f \left (x \right ) y^{\prime }+f \left (x \right ) y = 0 \]

19568

\[ {} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

19569

\[ {} x y^{\prime \prime }-\left (x +n \right ) y^{\prime }+n y = 0 \]

19570

\[ {} y-y^{\prime } \left (1+x \right )+x y^{\prime \prime } = 0 \]

19571

\[ {} x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

19572

\[ {} 3 y-\left (x +3\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

19573

\[ {} y^{\prime \prime }-f \left (x \right ) y^{\prime }+\left (f \left (x \right )-1\right ) y = 0 \]

19574

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 0 \]

19575

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 0 \]

19576

\[ {} y^{\prime \prime }+8 y = 0 \]

19577

\[ {} 2 y^{\prime \prime }-4 y^{\prime }+8 y = 0 \]

19578

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = 0 \]

19579

\[ {} 20 y-9 y^{\prime }+y^{\prime \prime } = 0 \]

19580

\[ {} 2 y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

19581

\[ {} 4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

19582

\[ {} y^{\prime \prime }+y^{\prime } = 0 \]

19583

\[ {} y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

19584

\[ {} 4 y^{\prime \prime }+20 y^{\prime }+25 y = 0 \]

19585

\[ {} 3 y+2 y^{\prime }+y^{\prime \prime } = 0 \]

19586

\[ {} y^{\prime \prime } = 4 y \]

19587

\[ {} 4 y^{\prime \prime }-8 y^{\prime }+7 y = 0 \]

19588

\[ {} 2 y^{\prime \prime }+y^{\prime }-y = 0 \]

19589

\[ {} 16 y^{\prime \prime }-8 y^{\prime }+y = 0 \]

19590

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = 0 \]