72.12.4 problem 1 (d)

Internal problem ID [19577]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 3. Second order linear equations. Section 17. The Homogeneous Equation with Constant Coefficients. Problems at page 125
Problem number : 1 (d)
Date solved : Thursday, October 02, 2025 at 04:40:17 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 2 y^{\prime \prime }-4 y^{\prime }+8 y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 24
ode:=2*diff(diff(y(x),x),x)-4*diff(y(x),x)+8*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} \left (c_1 \sin \left (\sqrt {3}\, x \right )+c_2 \cos \left (\sqrt {3}\, x \right )\right ) \]
Mathematica. Time used: 0.013 (sec). Leaf size: 32
ode=2*D[y[x],{x,2}] -4*D[y[x],x]+8*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^x \left (c_2 \cos \left (\sqrt {3} x\right )+c_1 \sin \left (\sqrt {3} x\right )\right ) \end{align*}
Sympy. Time used: 0.087 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(8*y(x) - 4*Derivative(y(x), x) + 2*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} \sin {\left (\sqrt {3} x \right )} + C_{2} \cos {\left (\sqrt {3} x \right )}\right ) e^{x} \]