72.10.8 problem 6 (d)

Internal problem ID [19555]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 3. Second order linear equations. Section 15. The General Solution of the Homogeneous Equation. Problems at page 117
Problem number : 6 (d)
Date solved : Thursday, October 02, 2025 at 04:40:06 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+y^{\prime }&=0 \end{align*}

With initial conditions

\begin{align*} y \left (2\right )&=0 \\ y^{\prime }\left (2\right )&={\mathrm e}^{-2} \\ \end{align*}
Maple. Time used: 0.052 (sec). Leaf size: 13
ode:=diff(diff(y(x),x),x)+diff(y(x),x) = 0; 
ic:=[y(2) = 0, D(y)(2) = exp(-2)]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = {\mathrm e}^{-2}-{\mathrm e}^{-x} \]
Mathematica. Time used: 0.011 (sec). Leaf size: 16
ode=D[y[x],{x,2}] +D[y[x],x]==0; 
ic={y[2]==0,Derivative[1][y][2]==Exp[-2]}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{e^2}-e^{-x} \end{align*}
Sympy. Time used: 0.072 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {y(2): 0, Subs(Derivative(y(x), x), x, 2): exp(-2)} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = e^{-2} - e^{- x} \]