| # | ODE | Mathematica | Maple | Sympy |
| \[
{} 12 y^{\prime \prime }+8 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+5 y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+10 y^{\prime }+16 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+16 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+25 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 t y^{\prime }+t^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+7 x y^{\prime }+8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-7 x y^{\prime }+25 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{\prime \prime }+9 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 9 x^{\prime \prime }+4 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+64 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+100 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+4 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+16 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+256 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+9 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 10 x^{\prime \prime }+\frac {x}{10} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+4 x^{\prime }+3 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{\prime \prime }+2 x^{\prime }+8 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+4 x^{\prime }+13 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+4 x^{\prime }+20 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-3 x^{\prime }+4 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+6 x^{\prime }+9 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime } = y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \ln \left (x \right ) y^{\prime \prime } = y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime } = \frac {y^{\prime }}{x}+\frac {x^{2}}{y^{\prime }}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = \sqrt {1-{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = \sqrt {1+y^{\prime }}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = y^{\prime } \left (1+y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = 2 y y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 3 y^{\prime } y^{\prime \prime } = 2 y
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 y^{\prime \prime } = 3 y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = {y^{\prime }}^{2}+y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = {\mathrm e}^{2 y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 4 y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime \prime }-2 y^{\prime }-8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime }-8 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+2 x y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +2\right )^{2} y^{\prime \prime }+3 \left (x +2\right ) y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x -3\right ) y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\left (\tan \left (x \right )-2 \cot \left (x \right )\right ) y^{\prime }+2 \cot \left (x \right )^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }+x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+2 x^{\prime }+6 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+2 x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+{x^{\prime }}^{2}+x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }-x \,{\mathrm e}^{x^{\prime }} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+x {x^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }+\left (x+2\right ) x^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }-x^{\prime }+x-x^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\lambda y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\lambda y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\alpha y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\lambda ^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\lambda ^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x^{2}-\frac {1}{9}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\frac {y^{\prime }}{x}+\frac {y}{9} = 0
\]
|
✓ |
✓ |
✓ |
|