4.4.41 Problems 4001 to 4100

Table 4.625: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

Sympy

17858

\[ {} 12 y^{\prime \prime }+8 y^{\prime }+y = 0 \]

17876

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

17877

\[ {} y^{\prime \prime }+10 y^{\prime }+16 y = 0 \]

17878

\[ {} y^{\prime \prime }+16 y = 0 \]

17879

\[ {} y^{\prime \prime }+25 y = 0 \]

17890

\[ {} y^{\prime \prime }-2 t y^{\prime }+t^{2} y = 0 \]

17891

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

17892

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

17893

\[ {} t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

17894

\[ {} x^{2} y^{\prime \prime }+7 x y^{\prime }+8 y = 0 \]

17895

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

17896

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

17897

\[ {} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

17898

\[ {} 5 x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

17899

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+25 y = 0 \]

17910

\[ {} 4 x^{\prime \prime }+9 x = 0 \]

17911

\[ {} 9 x^{\prime \prime }+4 x = 0 \]

17912

\[ {} x^{\prime \prime }+64 x = 0 \]

17913

\[ {} x^{\prime \prime }+100 x = 0 \]

17914

\[ {} x^{\prime \prime }+x = 0 \]

17915

\[ {} x^{\prime \prime }+4 x = 0 \]

17916

\[ {} x^{\prime \prime }+16 x = 0 \]

17917

\[ {} x^{\prime \prime }+256 x = 0 \]

17918

\[ {} x^{\prime \prime }+9 x = 0 \]

17919

\[ {} 10 x^{\prime \prime }+\frac {x}{10} = 0 \]

17920

\[ {} x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

17921

\[ {} \frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0 \]

17922

\[ {} \frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0 \]

17923

\[ {} 4 x^{\prime \prime }+2 x^{\prime }+8 x = 0 \]

17924

\[ {} x^{\prime \prime }+4 x^{\prime }+13 x = 0 \]

17925

\[ {} x^{\prime \prime }+4 x^{\prime }+20 x = 0 \]

17947

\[ {} x^{\prime \prime }-3 x^{\prime }+4 x = 0 \]

17948

\[ {} x^{\prime \prime }+6 x^{\prime }+9 x = 0 \]

18195

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \]

18198

\[ {} y^{\prime \prime }+y = 0 \]

18200

\[ {} y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

18207

\[ {} x y^{\prime \prime } = y^{\prime } \]

18208

\[ {} x y^{\prime \prime }+y^{\prime } = 0 \]

18209

\[ {} x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime } \]

18211

\[ {} x \ln \left (x \right ) y^{\prime \prime } = y^{\prime } \]

18213

\[ {} 2 y^{\prime \prime } = \frac {y^{\prime }}{x}+\frac {x^{2}}{y^{\prime }} \]

18216

\[ {} y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

18217

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \]

18218

\[ {} y^{\prime \prime } = \sqrt {1-{y^{\prime }}^{2}} \]

18220

\[ {} y^{\prime \prime } = \sqrt {1+y^{\prime }} \]

18221

\[ {} y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right ) \]

18223

\[ {} y^{\prime \prime } = y^{\prime } \left (1+y^{\prime }\right ) \]

18224

\[ {} 3 y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

18226

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2} \]

18227

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

18228

\[ {} 3 y^{\prime } y^{\prime \prime } = 2 y \]

18229

\[ {} 2 y^{\prime \prime } = 3 y^{2} \]

18230

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

18231

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2}+y^{\prime } \]

18235

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} y^{\prime } \]

18236

\[ {} y^{\prime \prime } = {\mathrm e}^{2 y} \]

18237

\[ {} 2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 4 y^{2} \]

18239

\[ {} -y+y^{\prime \prime } = 0 \]

18240

\[ {} 3 y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

18242

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 0 \]

18243

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

18245

\[ {} y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

18247

\[ {} 4 y^{\prime \prime }-8 y^{\prime }+5 y = 0 \]

18250

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

18251

\[ {} y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]

18404

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

18405

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

18406

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }+6 y = 0 \]

18407

\[ {} x y^{\prime \prime }+y^{\prime } = 0 \]

18408

\[ {} \left (x +2\right )^{2} y^{\prime \prime }+3 \left (x +2\right ) y^{\prime }-3 y = 0 \]

18409

\[ {} \left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }+4 y = 0 \]

18422

\[ {} \left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0 \]

18423

\[ {} \left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x -3\right ) y^{\prime }-2 y = 0 \]

18425

\[ {} x^{2} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

18426

\[ {} y^{\prime \prime }+\left (\tan \left (x \right )-2 \cot \left (x \right )\right ) y^{\prime }+2 \cot \left (x \right )^{2} y = 0 \]

18427

\[ {} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2} = 0 \]

18457

\[ {} x^{\prime \prime }+x^{\prime }+x = 0 \]

18458

\[ {} x^{\prime \prime }+2 x^{\prime }+6 x = 0 \]

18459

\[ {} x^{\prime \prime }+2 x^{\prime }+x = 0 \]

18460

\[ {} x^{\prime \prime }+{x^{\prime }}^{2}+x = 0 \]

18461

\[ {} x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x = 0 \]

18462

\[ {} x^{\prime \prime }-x \,{\mathrm e}^{x^{\prime }} = 0 \]

18463

\[ {} x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x = 0 \]

18464

\[ {} x^{\prime \prime }+x {x^{\prime }}^{2} = 0 \]

18465

\[ {} x^{\prime \prime }+\left (x+2\right ) x^{\prime } = 0 \]

18466

\[ {} x^{\prime \prime }-x^{\prime }+x-x^{2} = 0 \]

18467

\[ {} y^{\prime \prime }+\lambda y = 0 \]

18468

\[ {} y^{\prime \prime }+\lambda y = 0 \]

18469

\[ {} -y+y^{\prime \prime } = 0 \]

18470

\[ {} y^{\prime \prime }+y = 0 \]

18472

\[ {} y^{\prime \prime }+y = 0 \]

18473

\[ {} -y+y^{\prime \prime } = 0 \]

18474

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

18475

\[ {} y^{\prime \prime }+\alpha y^{\prime } = 0 \]

18478

\[ {} y^{\prime \prime }+\lambda ^{2} y = 0 \]

18479

\[ {} y^{\prime \prime }+\lambda ^{2} y = 0 \]

18482

\[ {} x y^{\prime \prime }+y^{\prime } = 0 \]

18503

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x^{2}-\frac {1}{9}\right ) y = 0 \]

18504

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

18505

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x}+\frac {y}{9} = 0 \]