4.4.35 Problems 3401 to 3500

Table 4.613: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

Sympy

14261

\[ {} \left (-x^{2}+2\right ) y+4 x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

14262

\[ {} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

14263

\[ {} x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

14264

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = 0 \]

14265

\[ {} \left (2 x^{3}-1\right ) y^{\prime \prime }-6 x^{2} y^{\prime }+6 x y = 0 \]

14267

\[ {} x^{2} y^{\prime \prime }-2 n x \left (1+x \right ) y^{\prime }+\left (a^{2} x^{2}+n^{2}+n \right ) y = 0 \]

14268

\[ {} x^{4} y^{\prime \prime }+2 x^{3} \left (1+x \right ) y^{\prime }+n^{2} y = 0 \]

14274

\[ {} y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2} = 0 \]

14276

\[ {} 2 y^{\prime \prime } = {\mathrm e}^{y} \]

14277

\[ {} y y^{\prime \prime }+2 y^{\prime }-{y^{\prime }}^{2} = 0 \]

14285

\[ {} x^{5} y^{\prime \prime }+\left (2 x^{4}-x \right ) y^{\prime }-\left (2 x^{3}-1\right ) y = 0 \]

14286

\[ {} x^{2} \left (-x^{3}+1\right ) y^{\prime \prime }-x^{3} y^{\prime }-2 y = 0 \]

14288

\[ {} y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }+2 \tan \left (x \right ) {y^{\prime }}^{2} = 0 \]

14289

\[ {} \left (x y^{\prime }-y\right )^{2}+x^{2} y y^{\prime \prime } = 0 \]

14290

\[ {} x^{3} y^{\prime \prime }-\left (x y^{\prime }-y\right )^{2} = 0 \]

14291

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = \ln \left (y\right ) y^{2}-x^{2} y^{2} \]

14292

\[ {} \sin \left (x \right )^{2} y^{\prime \prime }-2 y = 0 \]

14295

\[ {} y^{\prime \prime }+y y^{\prime } = 0 \]

14297

\[ {} \left (x^{2}-x \right ) y^{\prime \prime }+\left (4 x +2\right ) y^{\prime }+2 y = 0 \]

14298

\[ {} \left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2}+\left (1-\ln \left (y\right )\right ) y y^{\prime \prime } = 0 \]

14299

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

14304

\[ {} \sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 \sin \left (x \right ) y = 0 \]

14309

\[ {} x^{\prime \prime }+2 x^{\prime }+2 x = 0 \]

14313

\[ {} t^{2} x^{\prime \prime }-6 x = 0 \]

14314

\[ {} 2 x^{\prime \prime }-5 x^{\prime }-3 x = 0 \]

14393

\[ {} x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

14394

\[ {} x^{\prime \prime }-2 x^{\prime } = 0 \]

14395

\[ {} \frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]

14396

\[ {} x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

14397

\[ {} x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

14398

\[ {} x^{\prime \prime }-2 x^{\prime } = 0 \]

14399

\[ {} \frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]

14400

\[ {} x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

14401

\[ {} x^{\prime \prime }+x^{\prime }+4 x = 0 \]

14402

\[ {} x^{\prime \prime }-4 x^{\prime }+6 x = 0 \]

14403

\[ {} x^{\prime \prime }+9 x = 0 \]

14404

\[ {} x^{\prime \prime }-12 x = 0 \]

14405

\[ {} 2 x^{\prime \prime }+3 x^{\prime }+3 x = 0 \]

14406

\[ {} \frac {x^{\prime \prime }}{2}+\frac {5 x^{\prime }}{6}+\frac {2 x}{9} = 0 \]

14407

\[ {} x^{\prime \prime }+x^{\prime }+x = 0 \]

14408

\[ {} x^{\prime \prime }+\frac {x^{\prime }}{8}+x = 0 \]

14435

\[ {} x^{\prime \prime } = -\frac {x}{t^{2}} \]

14436

\[ {} x^{\prime \prime } = \frac {4 x}{t^{2}} \]

14437

\[ {} t^{2} x^{\prime \prime }+3 t x^{\prime }+x = 0 \]

14438

\[ {} t x^{\prime \prime }+4 x^{\prime }+\frac {2 x}{t} = 0 \]

14439

\[ {} t^{2} x^{\prime \prime }-7 t x^{\prime }+16 x = 0 \]

14440

\[ {} t^{2} x^{\prime \prime }+3 t x^{\prime }-8 x = 0 \]

14441

\[ {} t^{2} x^{\prime \prime }+t x^{\prime } = 0 \]

14442

\[ {} t^{2} x^{\prime \prime }-t x^{\prime }+2 x = 0 \]

14443

\[ {} x^{\prime \prime }+t^{2} x^{\prime } = 0 \]

14453

\[ {} x^{\prime \prime }+t x^{\prime }+x = 0 \]

14454

\[ {} x^{\prime \prime }-t x^{\prime }+x = 0 \]

14455

\[ {} x^{\prime \prime }-2 a x^{\prime }+a^{2} x = 0 \]

14456

\[ {} x^{\prime \prime }-\frac {\left (t +2\right ) x^{\prime }}{t}+\frac {\left (t +2\right ) x}{t^{2}} = 0 \]

14457

\[ {} t^{2} x^{\prime \prime }+t x^{\prime }+\left (t^{2}-\frac {1}{4}\right ) x = 0 \]

14467

\[ {} x^{\prime \prime }-x^{\prime }-6 x = 0 \]

14468

\[ {} x^{\prime \prime }-2 x^{\prime }+2 x = 0 \]

14470

\[ {} x^{\prime \prime }-x^{\prime } = 0 \]

14528

\[ {} 12 y-7 y^{\prime }+y^{\prime \prime } = 0 \]

14530

\[ {} 2 y+4 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

14535

\[ {} y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

14542

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 0 \]

14545

\[ {} y^{\prime \prime }-y^{\prime }-12 y = 0 \]

14546

\[ {} y^{\prime \prime }+y = 0 \]

14547

\[ {} y^{\prime \prime }+y = 0 \]

14548

\[ {} y^{\prime \prime }+y = 0 \]

14672

\[ {} y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]

14673

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

14674

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 0 \]

14675

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

14676

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

14677

\[ {} y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

14680

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

14681

\[ {} \left (1+x \right )^{2} y^{\prime \prime }-3 y^{\prime } \left (1+x \right )+3 y = 0 \]

14682

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

14683

\[ {} \left (x^{2}-x +1\right ) y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+\left (1+x \right ) y = 0 \]

14684

\[ {} \left (2 x +1\right ) y^{\prime \prime }-4 y^{\prime } \left (1+x \right )+4 y = 0 \]

14685

\[ {} \left (x^{3}-x^{2}\right ) y^{\prime \prime }-\left (x^{3}+2 x^{2}-2 x \right ) y^{\prime }+\left (2 x^{2}+2 x -2\right ) y = 0 \]

14688

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

14689

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

14690

\[ {} 4 y^{\prime \prime }-12 y^{\prime }+5 y = 0 \]

14691

\[ {} 3 y^{\prime \prime }-14 y^{\prime }-5 y = 0 \]

14694

\[ {} y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

14695

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

14696

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

14697

\[ {} y^{\prime \prime }+6 y^{\prime }+25 y = 0 \]

14698

\[ {} y^{\prime \prime }+9 y = 0 \]

14699

\[ {} 4 y^{\prime \prime }+y = 0 \]

14712

\[ {} y^{\prime \prime }-y^{\prime }-12 y = 0 \]

14713

\[ {} y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

14714

\[ {} y^{\prime \prime }-6 y^{\prime }+8 y = 0 \]

14715

\[ {} 3 y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]

14716

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

14717

\[ {} 4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

14718

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

14719

\[ {} 9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]

14720

\[ {} y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]

14721

\[ {} y^{\prime \prime }+6 y^{\prime }+58 y = 0 \]

14722

\[ {} y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

14723

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]