57.11.3 problem 1(c)

Internal problem ID [14437]
Book : A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.
Section : Chapter 2, Second order linear equations. Section 2.4.1 Cauchy-Euler equations. Exercises page 120
Problem number : 1(c)
Date solved : Thursday, October 02, 2025 at 09:37:11 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} t^{2} x^{\prime \prime }+3 x^{\prime } t +x&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 14
ode:=t^2*diff(diff(x(t),t),t)+3*t*diff(x(t),t)+x(t) = 0; 
dsolve(ode,x(t), singsol=all);
 
\[ x = \frac {c_2 \ln \left (t \right )+c_1}{t} \]
Mathematica. Time used: 0.01 (sec). Leaf size: 17
ode=t^2*D[x[t],{t,2}]+3*t*D[x[t],t]+x[t]==0; 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to \frac {c_2 \log (t)+c_1}{t} \end{align*}
Sympy. Time used: 0.094 (sec). Leaf size: 10
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(t**2*Derivative(x(t), (t, 2)) + 3*t*Derivative(x(t), t) + x(t),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = \frac {C_{1} + C_{2} \log {\left (t \right )}}{t} \]