58.8.3 problem 2

Internal problem ID [14672]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113
Problem number : 2
Date solved : Friday, October 03, 2025 at 07:29:44 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+x y^{\prime }+x^{2} y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=0 \\ y^{\prime }\left (1\right )&=0 \\ \end{align*}
Maple. Time used: 0.393 (sec). Leaf size: 5
ode:=diff(diff(y(x),x),x)+x*diff(y(x),x)+x^2*y(x) = 0; 
ic:=[y(1) = 0, D(y)(1) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = 0 \]
Mathematica. Time used: 0.049 (sec). Leaf size: 6
ode=D[y[x],{x,2}]+x*D[y[x],x]+x^2*y[x]==0; 
ic={y[1]==0,Derivative[1][y][1]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 0 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*y(x) + x*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {y(1): 0, Subs(Derivative(y(x), x), x, 1): 0} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Couldnt solve for initial conditions