4.4.16 Problems 1501 to 1600

Table 4.575: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

Sympy

9235

\[ {} y^{\prime \prime } = 4 y \]

9236

\[ {} 4 y^{\prime \prime }-8 y^{\prime }+7 y = 0 \]

9237

\[ {} 2 y^{\prime \prime }+y^{\prime }-y = 0 \]

9238

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = 0 \]

9239

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = 0 \]

9240

\[ {} y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

9241

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

9242

\[ {} y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

9243

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

9244

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = 0 \]

9245

\[ {} y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]

9246

\[ {} y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]

9247

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+10 y = 0 \]

9248

\[ {} 2 x^{2} y^{\prime \prime }+10 x y^{\prime }+8 y = 0 \]

9249

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

9250

\[ {} 4 x^{2} y^{\prime \prime }-3 y = 0 \]

9251

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

9252

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

9253

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }+3 y = 0 \]

9254

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

9255

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 0 \]

9291

\[ {} y^{\prime \prime }+y = 0 \]

9292

\[ {} -y+y^{\prime \prime } = 0 \]

9293

\[ {} x y^{\prime \prime }+3 y^{\prime } = 0 \]

9294

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

9295

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

9296

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

9297

\[ {} y^{\prime \prime }-\frac {x y^{\prime }}{x -1}+\frac {y}{x -1} = 0 \]

9298

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

9299

\[ {} x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

9300

\[ {} y^{\prime \prime }-x f \left (x \right ) y^{\prime }+f \left (x \right ) y = 0 \]

9301

\[ {} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

9325

\[ {} y^{\prime \prime }-3 y^{\prime }+y = 0 \]

9326

\[ {} y^{\prime \prime }+y^{\prime }+y = 0 \]

9327

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

9328

\[ {} y^{\prime \prime }-y^{\prime }+6 y = 0 \]

9333

\[ {} y^{\prime \prime }+9 y = 0 \]

9353

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

9356

\[ {} y^{\prime \prime } = -3 y \]

9357

\[ {} y^{\prime \prime }+\sin \left (y\right ) = 0 \]

9463

\[ {} y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

9505

\[ {} y^{\prime \prime }+y = 0 \]

9507

\[ {} -y+y^{\prime \prime } = 0 \]

9509

\[ {} y^{\prime \prime }-y^{\prime } = 0 \]

9511

\[ {} y^{\prime \prime }+2 y^{\prime } = 0 \]

9573

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

9574

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y \left (x^{2}-1\right ) = 0 \]

9575

\[ {} 4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-25\right ) y = 0 \]

9576

\[ {} 16 x^{2} y^{\prime \prime }+16 x y^{\prime }+\left (16 x^{2}-1\right ) y = 0 \]

9577

\[ {} x y^{\prime \prime }+y^{\prime }+x y = 0 \]

9578

\[ {} y^{\prime }+x y^{\prime \prime }+\left (x -\frac {4}{x}\right ) y = 0 \]

9579

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-4\right ) y = 0 \]

9580

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

9581

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (25 x^{2}-\frac {4}{9}\right ) y = 0 \]

9582

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-64\right ) y = 0 \]

9583

\[ {} x y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

9584

\[ {} x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]

9585

\[ {} x y^{\prime \prime }-y^{\prime }+x y = 0 \]

9586

\[ {} x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]

9587

\[ {} x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

9588

\[ {} 4 x^{2} y^{\prime \prime }+\left (16 x^{2}+1\right ) y = 0 \]

9589

\[ {} x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

9590

\[ {} 9 x^{2} y^{\prime \prime }+9 x y^{\prime }+\left (x^{6}-36\right ) y = 0 \]

9591

\[ {} y^{\prime \prime }-x^{2} y = 0 \]

9592

\[ {} x y^{\prime \prime }+y^{\prime }-7 x^{3} y = 0 \]

9593

\[ {} y^{\prime \prime }+y = 0 \]

9594

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

9595

\[ {} 16 x^{2} y^{\prime \prime }+32 x y^{\prime }+\left (x^{4}-12\right ) y = 0 \]

9596

\[ {} 4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (16 x^{2}+3\right ) y = 0 \]

9614

\[ {} y^{\prime \prime }+5 y^{\prime }+4 y = 0 \]

9621

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

9624

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

9628

\[ {} y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

9629

\[ {} 2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]

9632

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

9633

\[ {} y^{\prime \prime }+8 y^{\prime }+20 y = 0 \]

9663

\[ {} y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

9775

\[ {} y^{\prime \prime } = x {y^{\prime }}^{3} \]

9776

\[ {} x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \]

9777

\[ {} x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \]

9778

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

9779

\[ {} y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

9780

\[ {} \left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

9781

\[ {} 2 a y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

9784

\[ {} y^{\prime \prime } = 2 {y^{\prime }}^{3} y \]

9785

\[ {} -{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime } = 0 \]

9786

\[ {} y^{\prime \prime }+\beta ^{2} y = 0 \]

9787

\[ {} {y^{\prime }}^{3}+y y^{\prime \prime } = 0 \]

9788

\[ {} y^{\prime \prime } \cos \left (x \right ) = y^{\prime } \]

9789

\[ {} y^{\prime \prime } = x {y^{\prime }}^{2} \]

9790

\[ {} y^{\prime \prime } = x {y^{\prime }}^{2} \]

9791

\[ {} y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

9792

\[ {} y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

9793

\[ {} 2 y^{\prime \prime } = \sin \left (2 y\right ) \]

9794

\[ {} 2 y^{\prime \prime } = \sin \left (2 y\right ) \]

9796

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \]

9797

\[ {} y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2} \]

9798

\[ {} 2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right ) \]

9799

\[ {} {y^{\prime }}^{2}+x^{2} y^{\prime \prime } = 0 \]

9801

\[ {} y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]