46.5.12 problem 42

Internal problem ID [9621]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 7 THE LAPLACE TRANSFORM. 7.2.2 TRANSFORMS OF DERIVATIVES Page 289
Problem number : 42
Date solved : Tuesday, September 30, 2025 at 06:21:33 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=0 \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=1 \\ y^{\prime }\left (0\right )&=3 \\ \end{align*}
Maple. Time used: 0.115 (sec). Leaf size: 16
ode:=diff(diff(y(t),t),t)-2*diff(y(t),t)+5*y(t) = 0; 
ic:=[y(0) = 1, D(y)(0) = 3]; 
dsolve([ode,op(ic)],y(t),method='laplace');
 
\[ y = {\mathrm e}^{t} \left (\cos \left (2 t \right )+\sin \left (2 t \right )\right ) \]
Mathematica. Time used: 0.01 (sec). Leaf size: 18
ode=D[y[t],{t,2}]-2*D[y[t],t]+5*y[t]==0; 
ic={y[0]==1,Derivative[1][y][0] ==3}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to e^t (\sin (2 t)+\cos (2 t)) \end{align*}
Sympy. Time used: 0.100 (sec). Leaf size: 15
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(5*y(t) - 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) 
ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): 3} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (\sin {\left (2 t \right )} + \cos {\left (2 t \right )}\right ) e^{t} \]