| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-\cos \left (y\right ) y y^{\prime }\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+{y^{\prime }}^{2}+y y^{\prime \prime }\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime } = y^{\prime } \left (2 x -y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime } = \left (3 x -2 y^{\prime }\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime } = y^{\prime } \left (2-3 x y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+x^{3}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-x y^{\prime \prime }+{y^{\prime \prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 9 x^{2} y^{\prime \prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+5 x y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime }-x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+y \left (x^{2}-1\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y^{\prime \prime }+2 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }-2 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a y y^{\prime \prime }+b y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+c y^{\prime }+k y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+{y^{\prime }}^{2} \sin \left (y\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {x y^{\prime \prime }}{1-x}+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = \left (x^{2}+3\right ) y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = A y^{{2}/{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+{\mathrm e}^{y} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{n} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a {y^{\prime \prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a {y^{\prime \prime }}^{n} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime \prime }}^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{2}+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{2}+y^{\prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+{y^{\prime }}^{2}+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y {y^{\prime \prime }}^{2}+y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y {y^{\prime \prime }}^{2}+{y^{\prime }}^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2} {y^{\prime \prime }}^{2}+y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y {y^{\prime \prime }}^{4}+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{3} {y^{\prime \prime }}^{2}+y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{3}+y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y {y^{\prime \prime }}^{3}+y^{3} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y {y^{\prime \prime }}^{3}+y^{3} {y^{\prime }}^{5} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x y^{\prime }+y {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+y {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y^{2} {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\left (\sin \left (x \right )+2 x \right ) y^{\prime }+\cos \left (y\right ) y {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } y^{\prime \prime }+y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } y^{\prime \prime }+y^{n} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (y^{2}+3\right ) {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+x y^{\prime }+y {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+{y^{\prime }}^{2} \sin \left (y\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 10 y^{\prime \prime }+x^{2} y^{\prime }+\frac {3 {y^{\prime }}^{2}}{y} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 10 y^{\prime \prime }+\left ({\mathrm e}^{x}+3 x \right ) y^{\prime }+\frac {3 \,{\mathrm e}^{y} {y^{\prime }}^{2}}{\sin \left (y\right )} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-c^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 \csc \left (x \right )^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \cos \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 \left (x^{2}+1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} -x y+2 y^{\prime }+x y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+2 y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-5\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}-1\right ) y^{\prime \prime }-6 x y^{\prime }+12 y = 0
\]
|
✓ |
✓ |
✗ |
|