| # | ODE | Mathematica | Maple | Sympy |
| \[
{} 32 y^{\prime \prime } \left (x y^{\prime \prime }-y^{\prime }\right )^{3}+\left (2 y y^{\prime \prime }-{y^{\prime }}^{2}\right )^{3} = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} f \left (y^{\prime \prime }\right )+x y^{\prime \prime } = y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} f \left (\frac {y^{\prime \prime }}{y^{\prime }}\right ) y^{\prime } = {y^{\prime }}^{2}-y y^{\prime \prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} f \left (y^{\prime \prime }, y^{\prime }-x y^{\prime \prime }, y-x y^{\prime }+\frac {x^{2} y^{\prime \prime }}{2}\right ) = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } y^{\prime \prime } = a x {y^{\prime }}^{5}+3 {y^{\prime \prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 6 y^{\prime \prime }-11 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 k y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 k y^{\prime }-12 k^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+20 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+20 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 2 y y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} r^{\prime \prime } = -\frac {k}{r^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = \frac {3 k y^{2}}{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 2 k y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} r^{\prime \prime } = \frac {h^{2}}{r^{3}}-\frac {k}{r^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }-3 {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+2 \left (1+y^{\prime }\right ) x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = {\mathrm e}^{y} y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = 2 y y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 y^{\prime \prime } = {\mathrm e}^{y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime }-2 x {y^{\prime }}^{2}+x y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (1+y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1+{y^{\prime }}^{2}\right )^{3} = a^{2} {y^{\prime \prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} u^{\prime \prime }-\frac {a^{2} u}{x^{{2}/{3}}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -a^{2} y+y^{\prime \prime } = \frac {6 y}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-\left (x^{2}+\frac {1}{4}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {25}{4}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y \,{\mathrm e}^{2 x} = n^{2} y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\frac {y}{4 x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y-4 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+9 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+16 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-5 y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+5 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+13 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }+y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+2 x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime \prime }}^{2} = k^{2} \left (1+{y^{\prime }}^{2}\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2-x \right ) x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }-2 y^{\prime } \left (1+x \right )+\left (x +2\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x y^{\prime \prime }-2 \left (3 x -1\right ) y^{\prime }+\left (3 x -2\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+y^{\prime } \left (1+x \right )-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (1+x \right ) y^{\prime \prime }-\left (x -1\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} r^{\prime \prime }-6 r^{\prime }+9 r = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right ) = y y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = -4 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+2 x \right ) y^{\prime \prime }-2 y^{\prime } \left (1+x \right )+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} m y^{\prime \prime }+k y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} m y^{\prime \prime }+b y^{\prime }+k y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+6 y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }+18 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+6 y^{\prime }+12 y = 0
\]
|
✓ |
✓ |
✓ |
|