4.4.14 Problems 1301 to 1400

Table 4.571: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

Sympy

7593

\[ {} 2 y^{\prime \prime }+7 y^{\prime }-4 y = 0 \]

7594

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

7595

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

7596

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

7597

\[ {} y^{\prime \prime }+8 y^{\prime }+16 y = 0 \]

7598

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

7599

\[ {} 6 y^{\prime \prime }+y^{\prime }-2 y = 0 \]

7600

\[ {} z^{\prime \prime }+z^{\prime }-z = 0 \]

7601

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

7602

\[ {} y^{\prime \prime }-y^{\prime }-11 y = 0 \]

7603

\[ {} 4 w^{\prime \prime }+20 w^{\prime }+25 w = 0 \]

7604

\[ {} 3 y^{\prime \prime }+11 y^{\prime }-7 y = 0 \]

7605

\[ {} y^{\prime \prime }+2 y^{\prime }-8 y = 0 \]

7606

\[ {} y^{\prime \prime }+y^{\prime } = 0 \]

7607

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

7608

\[ {} y^{\prime \prime }-4 y^{\prime }-5 y = 0 \]

7609

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

7610

\[ {} z^{\prime \prime }-2 z^{\prime }-2 z = 0 \]

7611

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

7612

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

7617

\[ {} y^{\prime \prime }+y = 0 \]

7618

\[ {} y^{\prime \prime }+y = 0 \]

7619

\[ {} y^{\prime \prime }+y = 0 \]

7630

\[ {} y^{\prime \prime }-y = 0 \]

7631

\[ {} y^{\prime \prime }-y = 0 \]

7632

\[ {} y^{\prime \prime }+\operatorname {dif} \left (y, t\right )-6 y = 0 \]

7676

\[ {} x^{\prime \prime }-\omega ^{2} x = 0 \]

7678

\[ {} x^{\prime \prime }+42 x^{\prime }+x = 0 \]

7695

\[ {} x \left (1+x \right )^{2} y^{\prime \prime }+y^{\prime } \left (-x^{2}+1\right )+\left (x -1\right ) y = 0 \]

7696

\[ {} \left (1-x \right ) x y^{\prime \prime }+2 \left (1-2 x \right ) y^{\prime }-2 y = 0 \]

7697

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

7698

\[ {} x y^{\prime \prime }+\frac {y^{\prime }}{2}+2 y = 0 \]

7699

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

7700

\[ {} 2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

7701

\[ {} x y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

7702

\[ {} x \left (x -1\right )^{2} y^{\prime \prime }-2 y = 0 \]

7705

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+m y = 0 \]

7791

\[ {} \frac {x^{\prime \prime }}{2} = -48 x \]

7833

\[ {} -y+y^{\prime \prime } = 0 \]

7838

\[ {} y^{\prime \prime }+y^{\prime }+y = 0 \]

7844

\[ {} x^{\prime \prime }+4 x^{\prime }+4 x = 0 \]

7860

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 0 \]

7861

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

7862

\[ {} -y+y^{\prime \prime } = 0 \]

7864

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

7978

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 0 \]

7982

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

7984

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

7987

\[ {} {y^{\prime }}^{3}+y y^{\prime \prime } = 0 \]

7988

\[ {} y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

7990

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

7992

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

7993

\[ {} y^{\prime \prime }+25 y = 0 \]

8042

\[ {} x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

8046

\[ {} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-10 y = 0 \]

8048

\[ {} 4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right )^{2} y = 0 \]

8050

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

8055

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (9 x^{2}+6\right ) y = 0 \]

8062

\[ {} {y^{\prime }}^{3}+y y^{\prime \prime } = 0 \]

8063

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

8064

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-\cos \left (y\right ) y^{\prime }+y y^{\prime } \sin \left (y\right )\right ) \]

8067

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = \ln \left (y\right ) y^{2} \]

8072

\[ {} 2 \left (1+y\right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+y^{2}+2 y = 0 \]

8165

\[ {} u^{\prime \prime }+u^{\prime }+u = \cos \left (r +u\right ) \]

8166

\[ {} y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

8167

\[ {} R^{\prime \prime } = -\frac {k}{R^{2}} \]

8168

\[ {} x^{\prime \prime }-\left (1-\frac {{x^{\prime }}^{2}}{3}\right ) x^{\prime }+x = 0 \]

8174

\[ {} y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

8184

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = 0 \]

8194

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

8195

\[ {} 2 y^{\prime \prime }+7 y^{\prime }-4 y = 0 \]

8196

\[ {} 2 y^{\prime }+x y^{\prime \prime } = 0 \]

8197

\[ {} 4 x^{2} y^{\prime \prime }+y = 0 \]

8198

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 0 \]

8225

\[ {} x^{\prime \prime }+x = 0 \]

8226

\[ {} x^{\prime \prime }+x = 0 \]

8227

\[ {} x^{\prime \prime }+x = 0 \]

8228

\[ {} x^{\prime \prime }+x = 0 \]

8229

\[ {} -y+y^{\prime \prime } = 0 \]

8230

\[ {} -y+y^{\prime \prime } = 0 \]

8231

\[ {} -y+y^{\prime \prime } = 0 \]

8232

\[ {} -y+y^{\prime \prime } = 0 \]

8257

\[ {} y^{\prime \prime }+4 y = 0 \]

8258

\[ {} y^{\prime \prime }+4 y = 0 \]

8259

\[ {} y^{\prime \prime }+4 y = 0 \]

8260

\[ {} y^{\prime \prime }+4 y = 0 \]

8261

\[ {} y^{\prime \prime }+4 y = 0 \]

8262

\[ {} y^{\prime \prime }+4 y = 0 \]

8265

\[ {} 2 y^{\prime \prime }-3 y^{2} = 0 \]

8273

\[ {} x y^{\prime \prime }-y^{\prime } = 0 \]

8274

\[ {} y^{\prime \prime } = y^{\prime } \]

8284

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

8288

\[ {} x^{2} y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

8292

\[ {} y^{\prime \prime } = 2 {y^{\prime }}^{3} y \]

8635

\[ {} y^{\prime \prime }-y^{\prime }-6 y = 0 \]

8637

\[ {} y^{\prime \prime }-\frac {y}{4} = 0 \]

8640

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

8644

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

8648

\[ {} 9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]

8764

\[ {} y^{\prime \prime }+2 y^{\prime }-y = 0 \]